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ABSTRACT: Crystalline coordination architectures with coordinatively
unsaturated metal sites are of great importance for their attractive properties.
Tunable side chains of the 4-formylimidazole here were employed for directing
the subcomponent self-assembly of (CuIIN4)2(Cu

II)2 (1), {(Cu
IIN4)(Cu

II)2}n
(2), and {L(CuII)2}n (3) under the same solvothermal conditions, giving the
structural diversity. The unique square-planar CuII/NiIIN4 units with open
metal sites can not only be in situ embedded in 1 and 2, but also be
successfully immobilized in {(NiIIN4)2(Cu

ICN)9}n (4) and {(CuIIN4)2-
(CuICN)9}n (5), through the metalloligand strategy. Enzyme-like substrate-
specific activity was observed by employing 5 as a heterogeneous catalyst,
which exhibits increased activity and high selectivity toward the catalytic oxidation of 1-phenylethyl alcohol derivatives. This work
presents two promising methodologies for the introduction of controllable open metal sites in versatile crystalline coordination
complexes and their application in the substrate-selective catalytic oxidation reaction.

1. INTRODUCTION

It has long been of interest to worldwide researchers to prepare
metalloporphyrins and salen-based derivatives, due to their
square-planar 4-coordinated units, accessible functionalization
and tunable structures, etc.1−4 Recently, crystalline metal
coordination compounds5−7 such as metallacycles,3,8,9 rotax-
anes,10 cages,11 metal−organic frameworks (MOFs), and one-/
two-dimensional (1D/2D) coordination polymers (CPs) can
be built with such square-planar 4-coordinated metal-
loligand,12−16 featuring breathtaking properties such as
catalysis,14,15 separation,11,13 photoluminescence,9 and light-
harvesting materials.16,17 It is highly worthwhile to introduce
the square-planar 4-coordinated units into the self-assembly of
well-defined crystalline structures.
Several methodologies have been developed for the

integration of metallosalen/metalloporphyrin struts with
MOFs, including noncovalent encapsulation,18 metalloligand
self-assembly,7,12−15 and postsynthetic modification/ex-
change,14 in the research groups of Hupp,6,19 Goldberg,20

Zhou,21 Ma,16 Cui,11,13 and others.22,23 Our group has
prepared several copper(I)-based CPs with catalytically active
metallosalen moieties, showing promising photocatalytic and
transitional metal catalytic activities.24−26 However, the
rational design of metalloligands and synthesis of heteroge-
neous catalytic materials with predesigned structural moieties
and tunable catalytic activities remain a great challenge. The
successful practice of crystalline materials with square-planar 4-
coordinated units is limited due to the solubility of
metalloligand precursors, the large-scale preparation, and
rigid reaction conditions.

Side chain functionalization is very powerful for the
controllable synthesis and improved properties of various
materials during organic and solid-state synthesis.27−47 Here,
we succeed in building square-planar metalloligands and
tetrahedral CuI-based subunits into four complexes, ranging
from dimer, 1D chain, and 2D layer coordination structures,
(CuIIN4)2(Cu

II)2 (1), {L(Cu
II)2}n (3), {(Ni

IIN4)2(Cu
ICN)9}n

(4), and {(CuIIN4)2(Cu
ICN)9}n (5), through the tunable side

chain functionalization of the imidazole precursors. The CuII/
NiIIN4 unit represents the square-planar metalloligand with
one 4-coordinated CuII/NiII ion and the chelating nitrogen
ligand. The enzyme-like substrate selectivity was observed by
employing 5 as a heterogeneous catalyst, which exhibits
increased activity and high selectivity toward 1-phenylethyl
alcohol derivatives. These complexes have been formulated
and characterized on the basis of elemental analyses, IR
spectroscopy, thermogravimetric (TG), and single-crystal X-
ray diffraction analyses (see the Supporting Information, for
experimental details).

2. EXPERIMENTAL SECTION
See the Supporting Information for detailed material synthetic
procedures, characterization, and other information.
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3. RESULTS AND DISCUSSION
3.1. Side Chain Induced Self-Assembly. Complexes 1,

2, and 3 can be readily prepared via solvothermal three-
component self-assembly of oxalyl dihydrazide, CuI, and 4-
formylimidazole with or without substituents, in an ethanol/
water mixture at 120 °C for 3 days (see the Supporting
Information for details). In the absence of side chains on the
imidazole ring, CP 2 presents a one-dimensional zigzag chain
with square-planar 4-coordinated CuII atoms,26 while the
replacement of 4-formylimidazole with 5-methyl-4-formylimi-
dazole and 2-ethyl-4-methyl-5-formylimidazole under the same
reaction conditions gave gray block-like 1 and red block-like
CP 3, respectively. X-ray single-crystal diffraction analyses
revealed that structures of complexes 1, 2, and 3 range from
simple dimer to one-dimensional chain as shown in Figure 1.

Among them, mix-valence complex 1 (Tables S1 and S2, in the
Supporting Information) contains the twisted square-planar 4-
coordinated CuII atom and the tetrahedral CuI atom in the
asymmetric unit (Figure 1a). In the asymmetric unit of
complex 3 (Figure 1a, Tables S1 and S3), the copper(I) atom
adopts tetrahedral 4-coordination configuration, which is
coordinated to the chelating ligand (L) to form a ladder-
shaped one-dimensional chain.
In both structures of complexes 1 and 2, CuIIN4 subunits

exist with the coordinatively unsaturated metal sites (CUSs)
through synergistic self-assembly of starting subcomponents
(Figures 2a and S1). Interestingly, the insertion of 2-ethyl
group on the imidazole ring leads to the tetrahedral CuI-
dominated coordination geometry in complex 3 and induces
the decarboxylation and imine formation to give the ligand L
(Figure 2b,c). Considering the steric effect of two adjacent
imidazole rings, bulky alkyl groups undoubtedly hinder the
driven force to achieve the CuIIN4 planar model. Hence, side-
chain functionalization of the starting components provides a

meaningful way for directing coordination-driven self-assembly
and construction of target compounds.

3.2. Metalloligand Self-Assembly. As an effort to
explore other effective methodologies to immobilize the
square-planar 4-coordinated units in the crystalline materials,
we have also turned to the metalloligand strategy.7,25,48−51

Unlike the subcomponent self-assembly as mentioned above,
heterometallic 2D CPs 4 and 5 were successfully obtained by
the reaction of CuII/NiII N4 precursors and CuCN in a molar
ratio of 2:9 in a DMF/acetonitrile mixture (v/v, 3:1) at 120 °C
for 3 days (Figure 3a, see also the Supporting Information for
details). X-ray diffraction analyses revealed that {(NiIIN4)2-
(CuICN)9}n (4) and {(CuIIN4)2(Cu

ICN)9}n (5) are isostruc-
tural to each other, crystallized in the triclinic P1̅ space group
(Tables S1, S4, and S5). The asymmetric unit of 5 contains
one deprotonated CuIIN4 metalloligand connected by two
separate CuI atoms of the linear CuCN chain. The two CuI

atoms adopt 2-coordinated linear geometry and 3-coordinated
triangular geometry, respectively (Figure 3b). The CuIIN4
moieties are linked by infinite [CuCN]n chains to form a
two-dimensional layer along the b-axis (Figures 3c and S2).
Both structures of 4 and 5 (Tables S4 and S5) feature weak
CuI···CuI interactions between adjacent CuI atoms of
[CuCN]n chains, which was used to encapsulate CuII/NiIIN4
units.
Complexes 1−5 were found to be highly stable in air and

water based on powder X-ray diffraction (PXRD) experiments
and insoluble in DMF, ethanol, and acetonitrile (<0.5 mg/
mL). The thermal stabilities rise from 300 °C (1), 300 °C (4
and 5) to 330 °C (3) based on thermogravimetric analyses
(Figures S3−S6). Phase purity of the bulk samples was
established by comparison of their observed and simulated
PXRD patterns (Figures S7−S10).

3.3. Selective Catalytic Oxidation of Aromatic
Alcohols. The transitional metal catalytic properties of
CuIIN4 subunit were investigated through a model reaction
of the catalytic oxidation of aromatic alcohols to the
corresponding aldehydes or ketones. The reaction was
conducted using 3.0 mmol % of CP 5 as the catalyst and 1.5
equiv of TBHP as the oxidant with acetonitrile as the solvent at
20 °C under atmospheric pressure (see Supporting Informa-

Figure 1. Syntheses of 1, 2, and 3 via three-component self-assembly.
(a) Asymmetric units; (b) simplified topologies. (a, color codes: Cu,
gold; C, black; N, blue; I, purple.).

Figure 2. (a) In situ formation of CuIIN4 subunits in complexes 1 and
2. (b) In situ synthesis of ligand L via the imine formation and
decarboxylation in complex 3. (c) The tetrahedral CuI coordination
model and representive 1D ladder-shaped chain of 3.
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tion for details). Table S6 lists the substrate (aromatic
alcohols) conversion, the product selectivity (moles of
aldehydes/ketones per mole of total products), and turnover
frequency (TOF, moles of products per mole of catalysts per
hour) of 5. For the oxidation of 1-phenylethyl alcohol and
benzyl alcohol, only 7% and <1% conversion was observed in
blank experiments respectively (Table S6, entries 1 and 6). In
the presence of catalyst 5, 33% conversion and 94% selectivity
were observed for 1-phenylethyl alcohol. Although this
conversion was limited by the bulky crystal with accessible
catalytic sites only located on the solid surface (see Figure 4),
good catalytic efficiency can be achieved for the 1-phenylethyl
alcohol with substituted groups of methyl, chloro, and
methoxyl, which show high selectivities (93−99%) and an
increased conversions of 42%, 54%, and 87%, respectively (see
Figure 4). However, this substrate-selective catalytic phenom-
enon was not observed for that of benzyl alcohol, which gave a
low conversion of about 20%. Hence, it should be pointed out
that both 1-position and R groups of 1-phenylethyl alcohol
contributed to this catalytic efficiency. It is interesting that for
us to further investigate the supramolecular interaction
mechanism between side chains of 1-phenylethyl alcohol and
the open metal sites located on the bulky crystalline layered
structure.
To examine the heterogeneous catalytic nature of crystalline

coordination solid,52−54 the chemical stability and catalytic
recyclability of 5 was examined. After three cycles of repeated

reactions, the conversions and selectivities of benzyl alcohol to
benzaldehyde were maintained (Table S6, entries 7−9).
Atomic absorption spectroscopy (AAS) measurement was
conducted to show less than 0.1% copper metal leached out in
the solution. The powder X-ray diffraction (PXRD) analysis of
the solid residues recovered after three cycles illustrates a
similar pattern as that of the pristine solids (Figure S10). The
above results confirm that CP 5 is heterogeneous catalytic
materials, which can be recycled under mild conditions (e.g.,
low temperature, short time, and suitable oxidant).

4. CONCLUSION

In summary, we have constructed copper(I)-based complexes
with planar copper(II)/nickel(II) N4 metalloligands through
both one-pot self-assembly and metalloligand strategies.
Differences in side chains of the synthetic precursors were
managed to tune the coordination-driven self-assembly,
targeting versatile architectures under the same reaction
condition. Furthermore, when the crystalline bulky material
behaved as a heterogeneous catalyst in the oxidation of
aromatic alcohols, substrate-specific and enhanced catalytic
efficiency was achieved by 5, indicating the enzyme-like weak
interaction between the catalytic sites and the substrate.
Considering the significance of dynamic catalytically active
species in polymeric materials, side chain modification and
rational design of active sites are a promising way for
controlling the self-assembly behavior and catalytic transition
state.

Figure 3. (a) Syntheses of 4 and 5 via metalloligand precursors. (b)
The copper(II)-N4 asymmetric unit. Color codes: CuI, gold; CuII, red;
C, black; N, blue. (c) The representative 2D layer of complex 5 along
the b-axis. The hydrogen atoms were omitted for clarity.

Figure 4. Illustration of the substrate-specific catalytic oxidation
behavior in the conversion of four 1-phenylethyl alcohol derivatives
(R = H, CH3, Cl, and OCH3) to the corresponding ketones by
employing bulky crystalline complex 5 (see the photo) as a solid
catalyst. Five points represent (red and black, from left to right)
conversations of the blank experiment and substrates without or with
substituted groups of methyl, chloro, methoxyl. Four blue points
represent product selectivities of each substrate. The reaction was
performed at 293 K.
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